
	

	

Kang Seungmin
30th Jun., 2014

ESPRESSO: An Encryption as a Service
for Cloud Storage Systems

8th International Conference on	

Autonomous Infrastructure, Management and Security	

•  Introduction and motivation
•  Main contribution
•  Detailed proposed solution

•  Cloud storage system models
•  Overall architecture of ESPRESSO
•  Implementation of ESPRESSO
•  Integration of ESPRESSO into Swift and Cumulus

•  Experiments and performance evaluation
•  Conclusion and future work.

	

	

Outline

2	

•  Cloud storage systems provide high data availability and the
flexibility in data management, and they become the primary
storage space for cloud users’ data.

•  Data privacy is one of the most important challenges to be solved
due to the shared storage space characteristic of cloud storage
systems.

•  Data encryption emerged as one of the most effective means to
protect sensitive data.

•  Among existing CSPs, only Google Cloud Storage and Amazon S3
provide such encryption service.

•  Many other CSPs do not have yet this service.

	

	

Introduction and Motivation

3	

•  Proposing a solid encryption service which allows any CSP to
integrate it
•  Designing and implementing an encryption service, called

ESPRESSO (Encryption as a Service for Cloud Storage Systems).

•  ESPRESSO
•  is a standalone service
•  is configurable and flexible service for both CSPs and cloud users

• CSPs can choose the encryption algorithm based on their preference
• Users can specify the critical level of their data

•  is easily integrated.

	

	

Main Contribution

4	

•  Introduction and motivation
•  Main contribution
•  Detailed proposed solution

•  Cloud storage system models
•  Overall architecture of ESPRESSO
•  Implementation of ESPRESSO
•  Integration of ESPRESSO into Swift and Cumulus

•  Experiments and performance evaluation
•  Conclusion and future work.

	

	

Outline

5	

•  Cloud users deploy the encryption software on their local
machine or on a remote machine in their trusted domain.

•  Cloud users rely on a third party who deploys the encryption
software and provides it to users as a service.

•  CSPs deploy the encryption software on a server in its trusted
domain as one of its components.

	

	

Cloud Storage System Models

6	

InternetUsers

Encryption
serverStorage server

Storage server

Cloud Service
Provider

	

	

Overall Architecture of ESPRESSO

7	

Encryption as a Service

Master KeyKey Generator

Key
EncryptorEncrypted Key

Storage

Encrypted Key
Replicator

Primary
Keys DB

requests
master key

requests key
encryption/
decryption

requests/stores
encrypted keys

replicates
encrypted keys

updates DB

updates DB
Backup
Keys DB

Keys
Management

Data Encryption
Management

Universal API

Data Encryptor

Encryption
Algorithms

requests
algorithm

requests
keys

requests data
encryption/
decryption

Encryption/
Decryption
Requests

submitted

•  Two main components
•  Data encryption management.
•  Key management.

•  Supporting flexibility in ESPRESSO
•  AES and Blowfish algorithms.
•  Three critical levels with three key lengths:

128, 192 and 256 bits.

	

	

Implementation of ESPRESSO

8	

•  Implementing the abstract Universal API class to allow multiple CSPs to integrate
ESPRESSO, e.g., SwiftAPI.

•  Implementing the abstract Algorithm class to support different encryption algorithms.

MasterKey

espresso.keymnt

+ getMasterKey()

KeyEncryptor

- masterKey

+ encryptUserKey(user_key)
+ decryptUserKey(encrypted_key)

KeyGenerator

- keyEncryptor
- keyStorage

+ getUserKey(user_id, critical_level)

KeyStorage

+ getUserKey(user_id, critical_level)
+ storeUserKey(user_id, critical_level, encrypted_key)

- keyReplicator

KeyReplicator

+ replicateKey(key_id, encrypted_key)
espresso.enmnt

UniversalAPI

- dataEncryptor

WSGIAPI

+ encrypt_data(user_id, critical_level, data)
+ decrypt_data(user_id, encrypted_data)

+ encrypt_data(user_id, critical_level, data)
+ decrypt_data(user_id, encrypted_data)

DataEncryptor

- keyGenerator
- algorithm

+ encrypt_data(user_id, critical_level, data)
+ decrypt_data(user_id, encrypted_data)

Algorithm

+ encrypt_data(key_string, data)
+ decrypt_data(key_string, encrypted_data)

AESAlgorithm

+ encrypt_data(key_string, data)
+ decrypt_data(key_string, encrypted_data)

BlowfishAlgorithm

+ encrypt_data(key_string, data)
+ decrypt_data(key_string, encrypted_data)

Integration of ESPRESSO into Swift

9	

Internet

Storage
server

Storage
server

Storage
server

ESPRESSO
server

Proxy
server

Keystone
server

switchswitch

Swift

REST requests

.

.

.

Users

CSP trusted domain •  ESPRESSO is deployed on a
separate server.

•  The proxy server initializes
encryption on ESPRESSO.

•  All modification were made in
swift/proxy/controller/obj.py.

•  Less than 50 code lines were
added for encryption and
decryption requests in Swift.

•  Parameters of requests:
•  Input data
•  User identification
•  Critical level of data

Integration of ESPRESSO into Cumulus

10	

•  ESPRESSO is deployed on a
separate server.

•  The Cumulus interface
initializes encryption on
ESPRESSO.

•  All modification were made in
cumulus/cb/pycb/cbRequest.py.

•  Less than 50 code lines were
added for encryption and
decryption requests in
Cumulus.

•  --add-header “critical level: A”.

Internet

Authz
DB

ESPRESSO
server Cumulus

S3 requests

Users

CSP trusted domain
Cumulus interfaces

S3

Cumulus Redirection

Cumulus API

Cumulus Service
Implementation

Cumulus Storage API

Cumulus interfaces
POSIX HDFS

•  Introduction and motivation
•  Main contribution
•  Detailed proposed solution

•  Cloud storage system models
•  Overall architecture of ESPRESSO
•  Implementation of ESPRESSO
•  Integration of ESPRESSO into Swift and Cumulus

•  Experiments and performance evaluation
•  Conclusion and future work.

	

	

Outline

11	

•  Experiment setup
•  Deploying the integrated Swift/Cumulus storage system on two

dedicated physical servers of the same rack
•  PowerEdge C6220 with Intel(R) Xeon(R) Processor E5-2640 2.50GHz,

24GB RAM

•  Using real data files which are downloaded from the Wikipedia
archive. Data size varies from 100MB to 4000MB (~4GB).

•  Performance metrics
•  Latency of encryption algorithms
•  Latency of the storage system with and without ESPRESSO
•  Impact of network bandwidth
•  Comparison of Swift and Cumulus.

	

	

Experiments and Performance Evaluation

12	

•  Latency of encryption algorithm

	

	

Experiments and Performance Evaluation

13	

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

En
cr

yp
tio

n
tim

e
(s

)

Data size (MB)

256-bit key length
192-bit key length
128-bit key length

•  With the same key length, the
larger data volume, the longer
time needed to complete the
encryption.

•  The longer key provides
higher security level, however,
needs longer time to complete
the encryption.

•  Overall latency with and without ESPRESSO

	

	

Experiments and Performance Evaluation

14	

•  Without ESPRESSO
•  The total time is considered the
data transfer time from the client
to the Swift server.

•  With ESPRESSO
•  Additional overhead includes the
encryption time and the data
transfer time between the Swift
and ESPRESSO servers.

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

O
pe

ra
tio

n
tim

e
(s

)

Data size (MB)

With encryption service
Without encryption service

•  Impact of network bandwidth

	

	

Experiments and Performance Evaluation

15	

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

O
pe

ra
tio

n
tim

e
(s

)

Data size (MB)

WiFi connection
Wired connection

Total encryption time

•  The client machine is 3kms
far from the Swift server.

•  The data transfer time
dominates in both cases:
•  WiFi (~2 Mbps)
•  Wired connection (~10 Mbps).

•  The observed encryption time
overhead is negligible (2.75
mins) compared to the total
uploading time (37.45 mins)
with the WiFi connection.

•  Swift vs. Cumulus performance

	

	

Experiments and Performance Evaluation

16	

•  The operation times of both
systems are almost the same.

•  Swift needs longer time for
replicating data with three
copies.

•  Cumulus does not provide the
replication service.

•  The overhead on Swift is
compromised by the
fluctuation of data transfer
time.

•  We provided ESPRESSO, an encryption service which is
•  Standalone
•  Transparent
•  Flexible

•  Real experiments assess the performance and effectiveness
of ESPRESSO.

•  Any CSP can integrate ESPRESSO into its infrastructure
without heavy modification.

•  Future Work: integrate ESPRESSO with Homomorphic
encryption (HE).

	

	

Conclusion and Future Work

17	

Thank you for your attention!
Q & A

18	

	

	

