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•  Cloud storage systems provide high data availability and the 
flexibility in data management, and they become the primary 
storage space for cloud users’ data. 

•  Data privacy is one of the most important challenges to be solved 
due to the shared storage space characteristic of cloud storage 
systems. 

•  Data encryption emerged as one of the most effective means to 
protect sensitive data. 

•  Among existing CSPs, only Google Cloud Storage and Amazon S3 
provide such encryption service. 

•  Many other CSPs do not have yet this service. 
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•  Proposing a solid encryption service which allows any CSP to 
integrate it 
•  Designing and implementing an encryption service, called 

ESPRESSO (Encryption as a Service for Cloud Storage Systems). 

•  ESPRESSO 
•  is a standalone service 
•  is configurable and flexible service for both CSPs and cloud users 

• CSPs can choose the encryption algorithm based on their preference 
• Users can specify the critical level of their data 

•  is easily integrated. 
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•  Cloud users deploy the encryption software on their local 
machine or on a remote machine in their trusted domain. 

•  Cloud users rely on a third party who deploys the encryption 
software and provides it to users as a service.  

•  CSPs deploy the encryption software on a server in its trusted 
domain as one of its components. 
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•  Two main components 
•  Data encryption management. 
•  Key management. 

 

 
 

 

 

•  Supporting flexibility in ESPRESSO 
•  AES and Blowfish algorithms. 
•  Three critical levels with three key lengths: 

128, 192 and 256 bits. 
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•  Implementing the abstract Universal API class to allow multiple CSPs to integrate 
ESPRESSO, e.g., SwiftAPI. 

•  Implementing the abstract Algorithm class to support different encryption algorithms. 

 

MasterKey

espresso.keymnt

+ getMasterKey()

KeyEncryptor

- masterKey

+ encryptUserKey(user_key)
+ decryptUserKey(encrypted_key)
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KeyStorage
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CSP trusted domain •  ESPRESSO is deployed on a 
separate server. 

•  The proxy server initializes 
encryption on ESPRESSO. 

•  All modification were made in 
swift/proxy/controller/obj.py. 

•  Less than 50 code lines were 
added for encryption and 
decryption requests in Swift. 

•  Parameters of requests: 
•  Input data 
•  User identification 
•  Critical level of data 
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•  ESPRESSO is deployed on a 
separate server. 

•  The Cumulus interface 
initializes encryption on 
ESPRESSO. 

•  All modification were made in 
cumulus/cb/pycb/cbRequest.py. 

•  Less than 50 code lines were 
added for encryption and 
decryption requests in 
Cumulus. 

•  --add-header “critical level: A”. 
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•  Experiment setup 
•  Deploying the integrated Swift/Cumulus storage system on two 

dedicated physical servers of the same rack 
•  PowerEdge C6220 with Intel(R) Xeon(R) Processor E5-2640 2.50GHz, 

24GB RAM 

•  Using real data files which are downloaded from the Wikipedia 
archive. Data size varies from 100MB to 4000MB (~4GB). 

•  Performance metrics 
•  Latency of encryption algorithms 
•  Latency of the storage system with and without ESPRESSO 
•  Impact of network bandwidth 
•  Comparison of Swift and Cumulus. 
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•  Latency of encryption algorithm 
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•  With the same key length, the 
larger data volume, the longer 
time needed to complete the 
encryption. 

•  The longer key provides 
higher security level, however, 
needs longer time to complete 
the encryption. 

 
 

 

 



•  Overall latency with and without ESPRESSO 
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•  Without ESPRESSO 
•  The total time is considered the 
data transfer time from the client 
to the Swift server. 

•  With ESPRESSO 
•  Additional overhead includes the 
encryption time and the data 
transfer time between the Swift 
and ESPRESSO servers. 
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•  Impact of network bandwidth 
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•  The client machine is 3kms 
far from the Swift server. 

•  The data transfer time 
dominates in both cases:  
•  WiFi (~2 Mbps) 
•  Wired connection (~10 Mbps). 

•  The observed encryption time 
overhead is negligible (2.75 
mins) compared to the total 
uploading time (37.45 mins) 
with the WiFi connection. 

 
 
 

 



•  Swift vs. Cumulus performance 
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•  The operation times of both 
systems are almost the same. 

•  Swift needs longer time for 
replicating data with three 
copies. 

•  Cumulus does not provide the 
replication service. 

•  The overhead on Swift is 
compromised by the 
fluctuation of data transfer 
time. 

 
 
 

 



•  We provided ESPRESSO, an encryption service which is 
•  Standalone 
•  Transparent 
•  Flexible 

•  Real experiments assess the performance and effectiveness 
of ESPRESSO. 

•  Any CSP can integrate ESPRESSO into its infrastructure 
without heavy modification. 

•  Future Work: integrate ESPRESSO with Homomorphic 
encryption (HE). 
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Thank you for your attention! 
Q & A 
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