
Deploying
OpenFlow
experiments on
the Virtual Wall
testbed

Maxim Claeys
Jeroen Famaey

Niels Bouten

Ghent University
iMinds

Outline

3. Executing a basic Virtual Wall experiment using jFed

1. The Virtual Wall network emulation testbed

4. OpenFlow protocol basics

5. Running OpenFlow experiments on the Virtual Wall

2. Fed4FIRE: Federation of Future Internet testbeds

The Virtual Wall network
emulation testbed

Doing large test setups – The hard way

4	

Creating large test setups
§ Can be very time consuming
§ Requires a lot of hardware
§ No shared usage of hardware

S ma rtB its 	
 6 000B 	
 P e rfo rm a n c e 	
 A n a l y s i s 	
 S y ste mR

 Server Router
Shaping, Scheduling,
Caching, transcoding, ...

Fluke Tab

Video Servers

Traffic
Generator

VLAN Switch Network Router
Network Emulator

Home Router
QoS Support,
QoS feedback, ...

High End
Video Clients

Fluke Tab

Video Testbed Control Software
Video Quality Analysis

ISP
(Belnet, Belgacom,

Telenet,…)

DUT

M
irr

or
ed

 P
or

t

VLAN Switch

M
irr

or
ed

 P
or

t

Stream Capturer Stream Capturer Stream Capturer Stream Capturer

Video Test Bed

After a few years (or months?)

5	

6	

The iMinds Virtual Wall

ü  Automated topology creation and device configuration
ü  Full automatic install of OS & other software
ü  Fast swap-in and swap-out of experiments
ü  Experiment management tools

7	

The Virtual Wall

1.5 – 1.8
Tbps
Non-

Blocking
Switch

Server nodes

Displays for visualization & demos

Emulab

§  University of Utah testbed (hard- and software)
§  Predecessor of the Virtual Wall
§  Testbed management software freely available

iMinds Virtual Wall

9	

The Virtual Wall Concept

10	

Virtual Wall: Topology Control

11	

Virtual Wall: Topology Control

12	

Virtual Wall: Topology Control

13	

Virtual Wall: Node Functionality

Client (Windows CE) Network Element

Client (Windows) Client (Linux) Client 2

Network Element

Network Element

Server 3 Server Server (Linux)

Server 2 Server (Windows)

Impairment Node Impairment Node

Client 3

14	

Virtualization

Client (Windows CE) Network Element

Client (Windows) Client (Linux) Cl 1 | Cl 2 | Cl 3 | Cl 4

Network Element

Network Element

S 1 | … | S n Server Server (Linux)

S 1 | S 2 | S 3 | S 4 Server (Windows)

Impairment Node Impairment Node

Cl 1 | … | Cl n

15	

Two Wall Setups: Virtual Wall 1
§  200 servers, “older” nodes

§  Dual CPU, quad or eight cores
§  4 – 12 GB RAM
§  2 – 6 network interfaces

§  Central switch: Force 10 networks
§ 336 x Gb/s port
§ 8 x 10 Gb/s port
§ 1.53 Tb/s backplane

§ Wall 2
§ Runs latest version of testbed mgmt software
§ Local features need to be ported
§ No displays
§ Newer hardware

§ Wall 3
§ In beta
§ Soon publicly released

16	

Two Wall Setups: Virtual Wall 2
§  100 servers, “newer” nodes

§  12 cores @ 2.40GHz
§ 24GB RAM
§ 2-5 network interfaces

§ 1 Super computational node
§ 1 Super graphical node
§ Central switch: Force 10 networks

§ Wall 2
§ Runs latest version of testbed mgmt software
§ Local features need to be ported
§ No displays
§ Newer hardware

§ Wall 3
§ In beta
§ Soon publicly released

Connection to the iMinds wilab.t

§  Virtual Wall can be linked to Wireless testbed
§  Limited external interference
§  60 fixed nodes and 20 mobile node carriers

§  Zotac embedded PC
§  Rmoni sensor node
§  Bluetooth
§  Subset equipped with Webcam

Wrap-up: Virtual Wall

§  Automate time-consuming manual testbed setup
§  Automatic topology, network and device configuration
§  Reuse of hardware

§  Connected to
§  iMinds wireless wilab.t testbed
§  Other European FIRE facilities

§  Publicly available
§  For iMinds project partners
§  Through FIRE initiatives (BonFIRE, Fed4FIRE)

Fed4FIRE: Federation of
Future Internet testbeds

Fed4FIRE – general info
§  IP project coordinated by iMinds
§  10/2012 - 9/2016

�  Total budget: 7.75 MEUR
�  28 partners

Fed4FIRE facilities

PlanetLab
Europe

UNIVBRIS
OFELIA island

FuSeCo
playground

i2CAT OFELIA island

Smart Santander
facility

NETMODE wireless
testbed

NITOS wireless
testbed

Grid’5000

EPCC BonFIRE
testbed

iLab.t Virtual Wall

Sydney: NORBIT
testbed

Korea: KOREN
testbed

iLab.t Wireless lab

Outside EU

Outside EU

UC3M optical
access testbed

Stanford optical
access testbed

UPC community lab

UMA LTE performance lab

What’s in it for the experimenter?

§  Access a wide range of FIRE testbeds.
§  Create experiments that break the boundaries of the

different individual FIRE domains (wireless, wired,
OpenFlow, cloud computing, smart cities, services,
etc.)

§  Easily access all the required resources with a
single account.

§  Focus on your core task of experimentation, instead
of on practical aspects such as learning to work with
different tools for each testbed, requesting accounts
on each testbed separately, etc.

Example of the experiment lifecycle
Resource
discovery

• Show me all
resources
available in
the
Fed4FIRE
federation

Resource
requirements

• Limit to
nodes that
have 2 IEEE
802.11n
interfaces

Resource
reservation

• Reserve me
30 nodes on
testbed X for
10 hours

Resource
provisioning

• Make sure
that they will
be deployed
with Ubuntu
12.04 LTS

• After 10 s, start data stream of 10 Mbps with source node 1, after 30 s start second data
stream of 5 Mbps with source node 5. Experiment control

• Facility monitoring: crucial servers up and running? à testbed up and running
• Infrastructure monitoring: CPU load, number of transmit errors
• Experiment measurement: measure end-to-end throughput, delay and jitter.

Monitoring

• Store measurements on the storage server of testbed X for later analysis Permanent storage

• I’m done with them after 5h already, release my resources so they can be used by other
experimenters. Resource release

How to configure a Wall experiment

Emulab configuration
(AIMS 2013)

jFed Experimenter
(Fed4FIRE)

Common tool: jFed

§  Java based framework supporting SFA testbed
federation client tools

§  Includes automated testing tools and an
experimenter tool

Resource Specifications (RSpec)

07/07/14 26

§  RSpecs are XML documents that describe
resources
§  Machines, VMs, links, etc.

RSpec for a physical machine with one interface:

<?xml version="1.0" encoding="UTF-8"?>!
<rspec type="request” xsi:schemaLocation="http://www.geni.net/
resources/rspec/3 … xmlns="http://www.geni.net/resources/rspec/3">!
 <node client_id="node0" !component_manager_id="urn:publicid:IDN
+wall1.ilabt.iminds.be+authority+cm" !exclusive="true">!
 <sliver_type name="raw-pc"/>!
 </node>!
</rspec>!

RSpecs

§  RSpec documents are exchanged by
experimenter tools (e.g. jFed) and testbeds
§  Testbeds use RSpecs to describe what they have –

Advertisement RSpecs
§  Experimenters use RSpecs to describe the resources

they want – Request RSpecs
§  Testbeds use RSpecs to describe the resources

allocated to an experimenter – Manifest RSpecs

07/07/14 27

The AM API

§  Experimenter tools and testbeds talk to each other
using the Aggregate Manager API (AM API)

07/07/14 28

Aggregate
Manager

E
xp

er
im

en
te

r
To

ol

ListResources(…)

Advertisement RSpec

CreateSliver(Request RSpec, …)

Manifest RSpec

ListResources(SliceName, …)

Manifest RSpec

What do
you have?

I have …

I would
like …

You have
…

What do I
have?

You have
…

Stitching

Belnet
iMinds

Geant

10 vlans

Working today
250 vlans

Conclusions

§  A wide range of available European testbed
facilities circumvent need for time-consuming
manual testbed configuration and setup

§  Virtual Wall available for iMinds project partners
(or get in touch with us for other options)

§  Federation of European testbeds: Fed4FIRE:
Wide range of wired and wireless testbeds

Executing a basic Virtual Wall
experiment using jFed

Create SSH key

§  Linux/Unix
§  Create SSH key using ssh-keygen -t rsa

§  Windows
§  Use PuTTYgen to create SSH keys
§  Download from: http://the.earth.li/~sgtatham/putty/

latest/x86/putty-0.63-installer.exe

Create SSH key

Create SSH key

Create SSH key

Create SSH key

Create User

Create User

Create User

Password for
wall2 portal

Password for
Geni certificate

Create User

Create User

Create User

Add SSH key to emulab

Download Fed4FIRE certificate

jFed tool installation

§  You need a recent version of Java 7 (
http://www.java.com/verify)

§  Go to http://jfed.iminds.be

jFed tool installation

For OS X, you may need to change security settings
http://fed4fire-testbeds.ilabt.iminds.be/jfed-documentation/mac.html

jFed tool installation

Browse for Geni
.pem file

Enter Geni
password

jFed tool installation

jFed tool installation (Windows)

jFed tool installation (Unix/Mac)

jFed tool

Create Experiment – Select testbed

Create Experiment – Select testbed

Throughput / Latency / Packet loss

§  2 ways
§  By using tc at both endpoints of the links
§  By using impairment nodes with OpenBSD,

configured as a bridge

Link configuration

Adapt settings link

§  tc script on each node located at
% /var/emulab/boot/rc.linkdelay!
!
!

§  Modify settings
% sudo /sbin/tc class change …!
% sudo /sbin/tc qdisc change …!

Bridge configuration

Adapt settings bridge

§  Login to bridge using jFed

§  List settings
% sudo ipfw pipe show

§  Adjust settings
% sudo ipfw pipe nr config bw 10Mbit/s
plr 0.0 delay 40ms!

Advanced use with RSpec
Install Specific Disk Image

Install Software when provisioning, run script after provisioning

Specify link configurations

Shared Storage (per testbed)

§  Shared folder of nodes is available via
!/groups/wall2-ilabt-iminds-be/projectname!

§  This share is mounted on all nodes automatically
§  This share is permanent, data stored here will remain

available when experiment is done
§  This share is shared with all people in the project

Advanced use Alpha jFed

§  Support for command timeline
§  Add barriers to command execution
§  Execute instant commands

Create timed commands

Add Barriers

Start execution and follow output

Execute instant commands

Execute Instant commands

Follow output of instant commands

OpenFlow protocol basics

Traditional network switch

OpenFlow-enabled switch

The OpenFlow protocol and controller

§  Controller is
responsible for
populating flow table
of the switch

§  In case of a table
miss the switch can,
for example
§  Forward packet to

controller
§  Drop the packet

Switch

Data Path (Hardware)

Control Path OpenFlow

Any Host

OpenFlow Controller

OpenFlow Protocol (SSL/TCP)

OpenFlow ports

§  Network interfaces for passing packets to and
from OpenFlow switch

§  Packets enter the switch through ingress ports
§  Ingress ports can be used to match packets

§  Packets leave the switch through output ports
§  Packets can be sent to specific output port as action

§  Several port types available
§  Physical: Correspond to specific hardware interface
§  Logical: e.g., tunnels, aggregation groups, loopback
§  Reserved: e.g., controller, flooding, normal switching

OpenFlow Switch Specification Version 1.3.4

Table
0

Table
1

Table
n

Packet Execute
Action

Set

Packet
In

Action
SetAction

Set = {}

OpenFlow Switch

Packet
Out...

Ingress
port

Packet +
ingress port +

metadata

Action
Set

(a) Packets are matched against multiple tables in the pipeline

Match fields:
Ingress port +
metadata +

pkt hdrs

Action set

Flow
Table

➀ Find highest-priority matching flow entry

➁ Apply instructions:
 i. Modify packet & update match fields
 (apply actions instruction)
 ii. Update action set (clear actions and/or
 write actions instructions)
 iii. Update metadata

➂ Send match data and action set to
 next table

➀

➁

➂
Action set

Match fields:
Ingress port +
metadata +

pkt hdrs

(b) Per-table packet processing

Figure 2: Packet flow through the processing pipeline.

5.1 Pipeline Processing

OpenFlow-compliant switches come in two types: OpenFlow-only, and OpenFlow-hybrid. OpenFlow-
only switches support only OpenFlow operation, in those switches all packets are processed by the
OpenFlow pipeline, and can not be processed otherwise.

OpenFlow-hybrid switches support both OpenFlow operation and normal Ethernet switching opera-
tion, i.e. traditional L2 Ethernet switching, VLAN isolation, L3 routing (IPv4 routing, IPv6 routing...),
ACL and QoS processing. Those switches should provide a classification mechanism outside of Open-
Flow that routes tra�c to either the OpenFlow pipeline or the normal pipeline. For example, a switch
may use the VLAN tag or input port of the packet to decide whether to process the packet using one
pipeline or the other, or it may direct all packets to the OpenFlow pipeline. This classification mech-
anism is outside the scope of this specification. An OpenFlow-hybrid switch may also allow a packet
to go from the OpenFlow pipeline to the normal pipeline through the NORMAL and FLOOD reserved
ports (see 4.5).

The OpenFlow pipeline of every OpenFlow Logical Switch contains one or more flow tables, each flow
table containing multiple flow entries. The OpenFlow pipeline processing defines how packets interact
with those flow tables (see Figure 2). An OpenFlow switch is required to have at least one flow table,
and can optionally have more flow tables. An OpenFlow switch with only a single flow table is valid,
in this case pipeline processing is greatly simplified.

15 © 2014; The Open Networking Foundation

OpenFlow tables
OpenFlow Switch Specification Version 1.3.4

Table
0

Table
1

Table
n

Packet Execute
Action

Set

Packet
In

Action
SetAction

Set = {}

OpenFlow Switch

Packet
Out...

Ingress
port

Packet +
ingress port +

metadata

Action
Set

(a) Packets are matched against multiple tables in the pipeline

Match fields:
Ingress port +
metadata +

pkt hdrs

Action set

Flow
Table

➀ Find highest-priority matching flow entry

➁ Apply instructions:
 i. Modify packet & update match fields
 (apply actions instruction)
 ii. Update action set (clear actions and/or
 write actions instructions)
 iii. Update metadata

➂ Send match data and action set to
 next table

➀

➁

➂
Action set

Match fields:
Ingress port +
metadata +

pkt hdrs

(b) Per-table packet processing

Figure 2: Packet flow through the processing pipeline.

5.1 Pipeline Processing

OpenFlow-compliant switches come in two types: OpenFlow-only, and OpenFlow-hybrid. OpenFlow-
only switches support only OpenFlow operation, in those switches all packets are processed by the
OpenFlow pipeline, and can not be processed otherwise.

OpenFlow-hybrid switches support both OpenFlow operation and normal Ethernet switching opera-
tion, i.e. traditional L2 Ethernet switching, VLAN isolation, L3 routing (IPv4 routing, IPv6 routing...),
ACL and QoS processing. Those switches should provide a classification mechanism outside of Open-
Flow that routes tra�c to either the OpenFlow pipeline or the normal pipeline. For example, a switch
may use the VLAN tag or input port of the packet to decide whether to process the packet using one
pipeline or the other, or it may direct all packets to the OpenFlow pipeline. This classification mech-
anism is outside the scope of this specification. An OpenFlow-hybrid switch may also allow a packet
to go from the OpenFlow pipeline to the normal pipeline through the NORMAL and FLOOD reserved
ports (see 4.5).

The OpenFlow pipeline of every OpenFlow Logical Switch contains one or more flow tables, each flow
table containing multiple flow entries. The OpenFlow pipeline processing defines how packets interact
with those flow tables (see Figure 2). An OpenFlow switch is required to have at least one flow table,
and can optionally have more flow tables. An OpenFlow switch with only a single flow table is valid,
in this case pipeline processing is greatly simplified.

15 © 2014; The Open Networking Foundation

OpenFlow table entries

Match Fields Instructions

1.  Write Metadata
2.  Goto Flow Table
3.  Write action(s) to action set

1.  Output: Send packet to specified port
2.  Drop
3.  Set-Queue: Assign packet to specified queue
4.  Set-Field: Modify packet header field(s)
5.  Change-TTL

Priority Counters Timeouts Cookie Flags

Ingress
port

Packet
header fields

Pipeline
Metadata

OpenFlow software components

Controller NOX POX Beacon Floodlight

Slicing FlowVisor

Switches Open vSwitch Pica8 Pantou

OpenFlow controller implementations
§  NOX

§  Efficient C++ based controller for Linux
§  http://www.noxrepo.org/

§  POX
§  Python-based version of NOX
§  Less efficient but useful for rapid prototyping

§  Beacon
§  Modular Java-based OpenFlow controller
§  https://openflow.stanford.edu/display/Beacon/Home

§  Floodlight
§  Java-based, similar to Beacon
§  http://www.projectfloodlight.org/floodlight/

Switch slicing with FlowVisor

§  Normally: One
controller per switch

§  FlowVisor is a proxy
that lets multiple
controllers manage
one switch

§  Supports virtualization
by splitting switch into
slices, each managed
by different controller

Switch

Data Path (Hardware)

Control Path OpenFlow

Any Host

FlowVisor

OpenFlow Protocol (SSL/TCP)

Any Host

OpenFlow Controller

Any Host

OpenFlow Controller

OpenFlow Protocol (SSL/TCP)

OpenFlow software switches
§  Open vSwitch

§  C/Python software switch with OpenFlow support
§  Integrated into the GNU/Linux kernel
§  http://openvswitch.org/

§  Pica8
§  C-based hardware-agnostic switch operating system

with OpenFlow support
§  http://www.pica8.com/open-switching/

§  Pantou
§  OpenFlow implementation for OpenWRT-based

wireless routers

OpenFlow simulation with Mininet

§  Mininet creates a virtual network on one or
multiple computers

§  The network consists of virtual machines running
real code on top of GNU/Linux

§  Supports OpenFlow through integration of Open
vSwitch

§  Many OpenFlow controllers can be used,
including NOX/POX

§  Developed controller code can be easily
transferred to testbed or real deployment

Running OpenFlow
experiments on the Virtual Wall

Loading RSpec

§  Rspec at http://jfed.iminds.be/ovs.rspec
§  Topology

OVS

Host 1 Host 2 Host 3

POX

Loading RSpec

Find wall2 & Replace
by wall1 in RSpec

Configure switch

§  Ethernet bridge acting as software switch was
added during configuration
% sudo ovs-vsctl list-br!

§  Add interfaces to this bridge that will act as ports
of the software switch
% sudo ifconfig eth1 0!
% sudo ovs-vsctl add-port br0 eth1!
% sudo ovs-vsctl list-ports br0

§  Check interface-host mapping with ping
!
!

Point switch to controller

§  The controller can be hosted anywhere, here it is
on localhost
% sudo ovs-vsctl set-controller br0 tcp:
127.0.0.1:6633!

§  Standalone vs secure mode
% sudo ovs-vsctl set-fail-mode br0 secure!
% sudo ovs-vsctl set-fail-mode br0 standalone

§  What is the difference?

Learning controller

§  Try to ping between hosts
§  Start learning controller

% cd /local/pox!
% ./pox.py --verbose SimpleL2Learning!

Soft vs Hard Timeouts

§  Soft Timeout
§  If no matching packets received, how long will flow

remain in forwarding table
§  Hard Timeout

§  Total time a flow will remain in forwarding table,
independent of matching packets are received

Traffic duplication

§  Check traffic on each interface of switch using
tcpdump
% sudo tcpdump -i <data_interface_name>!

§  Duplicate all traffic and send to host3
% ./pox.py --verbose DuplicateTraffic !
--duplicate_port=[eth_host3]!
!

Traffic duplication

Port forward controller

§  Redirect traffic to different port
§  Run netcat on port 5000 and 6000 on host2

% nc –l 5000!

§  Check with learning controller if connection
works
% nc 10.0.1.2 5000!

§  Update ext/port_forward.config
§  Run portforwarding controller

% ./pox.py --verbose PortForwarding!

§  Check if port forwarding works

Server proxy controller

§  Redirect traffic to other host
§  Run netcat on port 5000 and 7000 on host2 and

host3 respectively
% nc –l 5000!

§  Update ext/proxy.config
§  Run proxy controller

% ./pox.py --verbose Proxy!

§  Check if proxy works

Further reading and contact information

§  Fed4FIRE
§  Website: http://www.fed4fire.eu
§  Documentation: http://doc.fed4fire.eu
§  Portal: http://portal.fed4fire.eu
§  jFed: http://jfed.iminds.be

§  Maxim Claeys: maxim.claeys@intec.ugent.be
§  Jeroen Famaey: jeroen.famaey@intec.ugent.be
§  Niels Bouten: niels.bouten@intec.ugent.be

